Interchangeability Testing in San Diego with Imported LNG

California Energy and Air Quality
Conference

October 30, 2008 Steven Moore, SDAPCD

Introduction

San Diego Attainment Status

Pollutant	Federal	State
Carbon Monoxide	Attainment	Attainment
Nitrogen Dioxide	Attainment	Attainment
Sulfur Dioxide	Attainment	Attainment
Lead	Attainment	Attainment
Particulate Matter	Attainment	Non-Attainment
Ozone	Non-Attainment	Non-Attainment

Days Exceeding Air Quality Standards for Ozone

Liquefied Natural Gas (LNG) vs Historical Natural Gas

- San Diego natural gas composition has been very stable over many years
- Natural gas derived by revaporizing LNG has a significantly different gas composition from historic pipeline (base) natural gas

Emission Impact Concerns

- Combustion equipment can be tuned to operate well over a wide range of gas compositions
- Some equipment has shown significant emission increases when operating on LNG after being tuned on historic pipeline natural gas
- Limited information available on potential emission impacts

LNG vs. CA Historic Natural Gas

LNG Event

- "LNG Event" commissioning of Sempra's Energia Costa Azul (ECA) liquefied natural gas (LNG) terminal in Baja, California
- Large influx of LNG-derived natural gas on May 9, 2008, into San Diego
- Future LNG use in San Diego may be extensive (2009?)

Costa Azul Zone of Influence for Rollout Planning

Energia Costa Azul & Pipelines to California

Sempra LNG

Testing During LNG Event

- District source tests of permitted equipment
- SoCal Gas and SDG&E Tests
 - Separate from, but coordinated with, District testing
- > Collection of CEMS data

Background

Wobbe Index

- Common measure of effect of natural gas composition on combustion equipment
- ► WI = HHV/(specific gravity)^{0.5}
- > HHV and specific gravity at STP
- Measure of fuel heat input to a combustor through an opening with a fixed size (constant fuel T & P)

Wobbe Index and Emissions

- For natural gas fuels metered through a fixed opening and with a fixed air supply, fuel to air ratio is directly proportional to the Wobbe Index
- Once tuned, changes in fuel to air ratio can strongly effect emissions
- Wobbe Index for most LNG is higher (1385 is PUC limit) than for historic San Diego pipeline gas (about 1335)

Wobbe Index and Emissions

- Most commercial and residential equipment can not easily or routinely adjust fuel or air flow
- Lean premix devices are especially sensitive
- Devices with diffusion flames less so

Industrial Equipment

- Operational controls that may compensate for changes in Wobbe Index are common but not universal
 - Fuel adjustment for load following
 - Air adjustment with O₂ trim systems
- Mitigates emission changes?

Beyond the Wobbe Index

- Ethane and propane have higher adiabatic flame temperatures than methane at the same fuel to air ratio
- Ethane and propane have higher flame speeds than methane at the same fuel to air ratio
- Combustion chemistry details

Testing

District Test Program

Objectives

- Provide information to help assess potential emission impacts from LNG
- Provide information to help assess potential compliance issues from LNG
- Identify any operational problems from LNG

Equipment Selection

- Issued advisory that District would not take action on any exceedance during testing
- > Requested voluntary participation
- Goal was to include sensitive equipment (lean premix combustors, little operational controls)
- Not entirely successful (e.g., boilers)

Additional LNG Emission Impact Information

District requested and received CEMS data for several pieces of equipment

> Most with add-on air pollution controls

SoCal Gas/SDG&E Test Program

- Closely coordinated with District and asked for District input (several meetings and conference calls)
- Actual testing not witnessed by District

Preparation and LNG Tracking

- Sempra provided valuable information on event timing and LNG composition
- SDG&E and SoCal Gas provided valuable help in locating LNG impact
 - 4 new GC monitors, made information available to the District in real time,
- Portable GCs (District and SDG&E) to track LNG

LNG Event Natural Gas Composition

Description	Rated Load, MMBtu/hr	Emissions Change with LNG-Derived Natural Gas			
		NO	NOx		CO
		Baseline, ppmv	Change from Baseline, %	Baseline, ppmv	Change from Baseline, %
Boiler, LNB, FGR, O ₂ Trim	72	25.3	1	18.5	56
Boiler, LNB, FGR, O ₂ Trim	12.6	24.2	5	3.6	68
Boiler, LNB, FGR, O ₂ Trim	23.8	26.6	2	108	0

Description	Rated Load, BHP	Emissions Change with LNG-Derived Natural Gas			
		N	NOx CO		
		Baseline, ppmv	Change from Baseline, %	Baseline, ppmv	Change from Baseline, %
Engine, Rich Burn, three-way catalyst	500	1.0	-11	737	3
Engine, Lean Burn	2400	45.1	-19	218	2
Engine, Lean Burn	2400	35.7	-16	210	0

Description	Rated Load, BHP	Emissions Change with LNG-Derived Natural Gas			
		NM	НС	VOCs	
		Baseline, ppmv	Change from Baseline, %	Baseline, ppmv	Change from Baseline, %
Engine, Rich Burn	500	10.2	53	2.5	-35
Engine, Lean Burn	2400	91.9	61	42.9	1

Description	Rated Load, MW	Emissions Change with LNG-Derived Natural Gas			
		NO	NOx		CO
		Baseline, ppmv	Change from Baseline, %	Baseline, ppmv	Change from Baseline, %
Gas Turbine, Water Injected	18.3	30.8	-6	N/A	N/A
Gas Turbine, DLN (LNG WI = 1371 avg)	5.2	11.5	1	0.7	0
Gas Turbine with Duct Burner, DLN, LNB	9.2	15.2	10	3.7	-33
Gas Turbine with Duct Burner, DLN, LNB (LNG WI = 1377 avg)	5.2	14.2	1	4.1	5

SoCal Gas/SDG&E Results

Equipment Description	Heat Input, MMBtu/hr	Emissions Change with LNG-Derived Natural Gas			
		NOx		CO	
		Baseline, ppmv	Change from Baseline, %	Baseline, ppmv	Change from Baseline, %
Boiler (heat input was 7% less on LNG)	16.8	30.2	-4	14.9	-12
Boiler	4.6	90	9	337	-31
Boiler—low load	7.2	26	-4	54	-22
Boiler—high load	7.2	30	-3	14	-7
Boiler—likely malfunctioning oxygen trim system	27.8	31	3	6	2500
Boiler (different boilers for baseline and LNG tests)	25.1	20	5	1	-100

SoCal Gas/SDG&E Results

Equipment Description	Heat Input, MMBtu/hr	Emissions Change with LNG-Derived Natural Gas			
		NOx		CO	
		Baseline, ppmv	Change from Baseline, %	Baseline, ppmv	Change from Baseline, %
Engine, Lean Burn— before manual adjustment (LNG WI = 1363–1372)	8.2	62	13	198	3
Engine, Lean Burn— after manual adjustment (LNG WI = 1363–1372)	8.2	62	3	198	3
Gas Turbine	17.0	61	5	91	_4

SoCal Gas/SDG&E Results

Equipment Description	Heat Input, MMBtu/hr	Emissions Change with LNG-Derived Natural Gas			
		NOx CO			0
		Baseline, ppmv Baseline, %		Baseline, ppmv	Change from Baseline, %
Kiln	0.374	63	-8	43	40
Pool Heater	4.0	171	7	0	N/A

CEMS Data

LNG Event CEMS Data—Turbine, 9.2 MW, Duct Burner, 38 MMBtu/hr

Wobbe Index: 1336–1382, Baselines: NOx = 15.5 ppmv, CO = 2.1 ppm, Turbine Load = 8MW, Duct Burner Heat Input = 32.9 MMBtu/hr

LNG 5-9-08 Event CEMS Data—Turbine, WI, SCR, 42.4 MW

Wobbe Index: 1337–1383, Baselines: NOx = 4.5 ppmv, SCR Inlet NOx = 44.5 ppmv, Load = 41.6 MW

LNG 5-9-08 Event CEMS Data—Combined Cycle Turbine, LNB, SCR, 170 MW Wobbe Index: 1336–1377, Baselines: NOx = 1.6 ppmv, SCR Inlet NOx = 8.6 ppmv, Load = 163.8 MW

Conclusions

Emission Changes: NOx & CO

- LNG not expected to cause emission increases greater than about 10% for NOx from the industrial equipment and gas composition tested
- > CO changes are often larger
- > Emissions may decrease in some cases
- Data supports no significant increases with active air pollution control devices

Emission Changes: VOCs

- LNG not expected to cause emission increases greater than about 10% for VOCs from the industrial equipment and gas composition tested
- VOC emissions may decrease in some cases
- NMHC increase may indicate potentially larger VOC increases with different LNG composition

Compliance Issues

- District source tests and CEMS data showed no compliance problems for equipment tested
- Even small increases may be an issue
- SoCal Gas/SDG&E testing showed two potential exceedances of NOx limits
 - Lean burn engine—tuning resolved
 - Boiler—2 ppmv, but exceeded by 1 ppmv on base gas
 - District doesn't use portable analyzer for compliance

Reliable Basis?

- Limited scope
- > Equipment tested self-selected
- Only one LNG gas composition tested (less C3 and C4 than base natural gas)
- Likely did not fully capture the potential emission increases from permitted equipment

Additional Issues

- > Inventory of combustion system types
- Large number of smaller industrial, commercial, and residential natural gas combustion devices
- Mobile sources
- Natural gas distribution system fugitive emissions
- Fluctuating gas quality

Overall Conclusion

Emission increases from LNG derived natural gas are counterproductive for attainment of ambient air quality standards

More research and information needed to fully assess potential impacts basin-wide

Acknowledgements—District Staff

Suzanne Blackburn Kai Barker Anthony Fry Lora Kear-Padilla Ian Morris Graham Mortimore Lara Porter Sterling Ross John Such Randy Consolacion Steve Moore

Acknowledgements—SoCal Gas/SDG&E/Sempra

Kevin Shea Les Bamburg Rod Schwedler Gregg Arney **Mohamed Derbas** Tom McMahon **Dinah Willier** Thomas Saunders James Guillet Charles Benson Steve Hale **Gregory Healy**